
*darren.powell@navy.mil; phone: 1 619 553 2553; fax: 1 619 553 6188; www.spawar.navy.mil/robots 
†Vehicle is used interchangeably with sensor throughout this paper. 
 
 
 

SPIE Proc. 6230: Unmanned Systems Technology VIII,  
Defense Security Symposium, Orlando, FL, 18-20 April, 2006 

Multi-robot operator control unit 
 

D. Powell*, G. Gilbreath, M. Bruch 
Space and Naval Warfare Systems Center, San Diego 

5360 Hull Street, San Diego, CA 92152 
 
 

ABSTRACT 
 
Space and Naval Warfare Systems Center, San Diego (SSC San Diego) has developed an unmanned vehicle and sensor 
operator control interface capable of simultaneously controlling and monitoring multiple sets of heterogeneous systems. 
The modularity, scalability and flexible user interface of the Multi-robot Operator Control Unit (MOCU) accommodates 
a wide range of vehicles and sensors in varying mission scenarios. MOCU currently controls all of the SSC San Diego 
developmental vehicles (land, air, sea, and undersea), including the SPARTAN Advanced Concept Technology 
Demonstration (ACTD) Unmanned Surface Vehicle (USV), the iRobot PackBot, and the Family of Integrated Rapid 
Response Equipment (FIRRE) vehicles and sensors. This paper will discuss how software and hardware modularity has 
allowed SSC San Diego to create a single operator control unit (OCU) with the capability to control a wide variety of 
unmanned systems. 
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1. INTRODUCTION 
 
The U.S. military has incorporated many robotic systems into battlefield scenarios over 
the past several years, ranging from a single vehicle or unattended sensor† to multiple 
vehicles and sensors. The majority of these systems use proprietary protocols requiring 
the creation and maintenance of a custom (stovepipe) OCU, able to control only a single 
asset type or a very limited subset of assets. With missions ranging from neutralization of 
an improvised explosive device (IED) to remote surveillance, the mix of hardware 
requires mission-specific control of functionality, and mission-specific information 
displayed to the operator. Some control units must be handheld (Figure 1), while others 
have large computational requirements and must be located in a HMMWV (Figure 2) or 
at a stationary land-based location. 
 

SSC San Diego has been working in 
the robotics field since the early 
1960s (see 
http://www.spawar.navy.mil/robots/
), during which time a wealth of 
corporate knowledge and lessons 
learned has been acquired. Most of 
these robotics projects resulted in the creation of custom operator 
control units, of which the Multiple Resource Host Architecture 
(MRHA) was the most capable and flexible. The MRHA was 
created for the Mobile Detection Assessment and Response System 
(MDARS) program to control both unattended sensors and mobile 
platforms, both indoor and outdoor, using a distributed 
architecture. While the MRHA is scalable (elements can be added 
or removed to suit the needs of the installed system and it can run 
on one or many computers), it is difficult to expand its capabilities 
beyond the original MDARS intent. For example, to control a 

Figure 1: Marine using 
the handheld OCU to 
control a PackBot 

Figure 2: OCU located in back of HMMWV with 
multiple screens and racks of computers to run C2 
software.



different type of vehicle or monitor a different kind of sensor or to use a different map or video display the MRHA code 
itself has to be modified. Two of the most valuable lessons SSC San Diego has learned are: (1) once you have an OCU 
that can control one type of unmanned system you will eventually need to modify it “just a little” to control another, and 
(2) each new vehicle will require extensive changes to the user interface, either due to an emergent customer 
requirement or the nature of the remote device. A new approach was needed to avoid time-consuming and expensive 
changes to a monolithic OCU to support new devices or technologies. 
 
MOCU has been designed to minimize these issues by using a more modular, scalable, and flexible architecture. 
Modularity allows for a breadth of functionality, such as communicating in unrelated protocols or displaying video with 
a proprietary video codec, and also makes third-party expansion of MOCU possible. Scalability enables MOCU to be 
installed on a wide range of hardware. MOCU also allows the user to define what information is displayed and 
determine what control is needed for each system. The same core software is currently used on a wide variety of 
projects, each utilizing these attributes in its own way. 
 

2. ARCHITECTURE 
 
MOCU was created to provide the ability to simultaneously control and monitor multiple existing or newly developed 
heterogeneous unmanned systems. The term heterogeneous is used to describe vehicles which are dissimilar in both 
modality (land, air, sea, or undersea) and communications protocol. The goal is to not just minimally control, but to 
have full access to the vehicle/sensor and its various payloads. To achieve this goal, a modular, scalable approach was 
developed.  
 
The core (Figure 3c) acts as the glue to tie modules to other modules and to the user interface. Each M (Figure 3a) 
represents a module which provides different functionality. Multiple modules of the same type can be utilized by the 
core. The interface (Figure 3b) between the module and the core is defined by the type of module. Each module of a 
certain type will conform to at least a subset of the interface definition for that type. The user interface, including 
display, joystick, and keyboard, is defined by a configuration file (Figure 3d). Multiple configuration files are loaded by 
the core but only one is used at a given time. 
 

 
Figure 3: The architecture of MOCU.  
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2.1 Modular 
The main theme in the MOCU architecture is modularity. At the center is the core, which loads and manages modules 
(Figure 3). Modules contain specific functionality that modifies what MOCU can display and control (Figure 4). By 
achieving specific capabilities through associated modules, the core remains relatively constant. 
 
The core acts as the glue to tie information from the 
vehicles or sensors to the display. It manages information 
from the modules, such as waypoints, vehicle or sensor 
status, tracks, etc, and also handles the window framing 
in the user interface but does not draw to the internal 
windows directly (this is handled by the modules). 
 
The core manages each module according to its 
functionality. Each of the loaded modules has one or 
more predefined types (Table 1), depending on the 
functionality it performs, and must conform to at least a 
subset of the API for its predefined type(s). By 
standardizing the interface, multiple modules of the same 
type may be loaded, which allows MOCU to 
simultaneously control heterogeneous vehicles or display 
different types of maps. For instance, if MOCU loads both a JAUS protocol module and a STANAG 4586 protocol 
module, it would be able to simultaneously communicate with both JAUS-compliant and STANAG 4586-compliant 
vehicles. 
 

Type Description Currently Implemented 
C2 Link Communicate data and control to another 

command and control system 
Naval Undersea Warfare Center 
(NUWC) National Marine 
Electronics Association (NMEA) 
derivative, Composeable 
FORCEnet (CFn) 

Gauges Display data to the user in a graphical 
format 

Microsoft’s Graphics Device 
Interface implementation 

GPS Import location of host for both differential 
correction and display on maps 

NUWC NMEA format, serial port 
using standard formats 

Elevation Imports elevation data for map data DTED 
Environment Retrieves information from the host 

computer, such as CPU usage and battery 
life 

VIA chipset 

Map Display geo-referenced data to the user 
interface 

Aerial photo, DNC, S-57, 
C/JMTK, GeoTIFF, WVS 

Media Decode and display video and audio from a 
vehicle or sensor 

Indigo video bridge (6000 and 
8000 series), MJPEG 

Planner Provides automated path planning from 
path database or circumnavigation 

Static from stored path database, 
dynamic path planner using DNC 
data 

Protocol Handle communication with vehicles or 
sensors 

JAUS (standard and SPARTAN), 
MRHA, iRobot TMR (PackBot 
and Gator), SMART 

                 Table 1: The types of modules supported by the core. 
 
To communicate with a vehicle or sensor, MOCU must load a protocol module, which then communicates with the 
vehicle and provides control when MOCU has requested it. MOCU supports a broad range of vehicle autonomy, from 
autonomous vehicles with obstacle avoidance to teleoperated vehicles to stationary sensors. As with all types of 
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Figure 4: In the modular MOCU architecture, multiple 
modules of each type may be loaded by the core. 



modules, the API between MOCU and protocol modules must define all of the functionality, but a specific module need 
only support the API functions that are required for a particular vehicle. For instance, the protocol module for the 
SPARTAN USV must handle waypoint navigation and radar controls; whereas, a stationary camera sensor might have a 
protocol module that only supports panning the camera. 
 
The creation of new modules is greatly simplified by 
the core handling the data management. For example, 
the map module type is vital for missions where 
geographic awareness is important. The core maintains 
the information on items on the maps and handles user 
input for actions such as panning or interfacing with a 
vehicle icon. There are many types of maps including 
both raster (Controlled Image Base (CIB), Compressed 
ARC Digitized Raster Graphic (CADRG), etc.) and 
vector (Digital Nautical Charts (DNC), World Vector 
Shoreline (WVS), etc.). The type of map(s) displayed 
within MOCU is chosen depending on the mission and 
modality of the vehicle (Figure 5). Some map 
packages display only one type of map, while others 
provide a very general capability but require extensive 
hardware to display the data at reasonable speeds. The 
interface to these map packages can be vastly 
different. With varying maps and requirements, the list 
of options for map modules is large. By handling the 
data management and user interface, each map module 
only needs to provide the map data and ability to draw lines and bitmaps in geographic coordinates.  
 
The modular architecture of MOCU allows for third party development, so that a module of any of the defined types can 
be created to completely alter the functionality of MOCU. For instance, a developer with a proprietary vehicle protocol 
may implement a protocol module using the defined interface and gain control of their vehicle in a fraction of the time it 
would take to write code for an entire OCU. No change is needed to the MOCU core when the standard interface is 
followed. 
 
2.2 Scalable 
MOCU is inherently scalable due to its modular nature. As previously stated, most of the functionality within MOCU 
resides in its modules. Depending on the system requirements, the capabilities of MOCU are adjusted by adding or 
removing modules with no need to modify the core. The memory footprint and computational requirements are 

Figure 5: MOCU using both aerial photo and DNC maps to 
control and monitor land, sea, and air vehicles. 

Figure 7: Command and control station for FIRRE project. 
MOCU is part of the system to monitor and control multiple 
vehicles and stationary sensor suites. 

Figure 6: MOCU controlling two types of PackBots on 
a Panasonic CF-18 Toughbook. User input includes a 
touchscreen and gamepad. 



determined by which modules are loaded. 
 
If the application requires a minimal installation, only the required modules to control or monitor a specific vehicle or 
sensor are installed on the target machine. For instance, the user may require small handheld hardware to control a 
teleoperated iRobot PackBot Scout (Figure 6). In this example, where only joysticks, video, and status are necessary, 
the OCU would consist of the MOCU core, PackBot protocol module, and PackBot media module. However, a larger 
control structure where multiple semi-autonomous vehicles communicating in different protocols and modalities may 
require more functionality, to include maps, vehicle status, planner and scheduler (Figure 7). MOCU can be 
reconfigured to run on a broad range of hardware, including small embedded processors, all using the same core and a 
specialized subset of available modules. 
 
2.3 Flexible user interface 
The user interface, which includes the display and user input, is defined by XML configuration files (Figure 3). The 
display configuration specifies the location and types of maps, video, gauges, etc. The user input includes the mapping 
of the joystick, keyboard, and mouse to commands in MOCU.  
 
MOCU has two general modes of operation: monitor and control. The user interface in both is defined by the 
configuration files discussed in section 2.4. One operator can use MOCU to monitor multiple vehicles and sensors, but 
at any given time, can only control one. Control of a particular vehicle is requested, and if granted by the vehicle, 
MOCU enters into control mode. 
 
In monitor mode, all the vehicles in communication with MOCU are shown geographically on all displayed maps 
(Figure 5). Vehicle status information is also presented for each vehicle along with the option to display video if the 
status gauge is available. No control is available to the vehicle or sensors while in monitor mode. At any point, the user 
can switch to control mode by selecting a vehicle. 
 
While in control mode, MOCU has complete control of a vehicle or sensor and its payloads. More status information is 
available, and the vehicle or sensor can be controlled through teleoperation or by sending waypoints to the vehicle, 
depending on what the vehicle or sensor supports. 
 
MOCU uses configuration files to determine how the display is arranged and where user input is mapped. MOCU 
configures itself via the configuration files at runtime, so there is no need to recompile the core software to make 
changes or additions. For instance, changing the type of map displayed or adding a compass gauge to an existing display 
for a particular vehicle can be done by modifying an XML file with a standard text editor. 

 

  
Figure 8: (a) Example of a configuration for an unmanned sea vehicle. A DNC map and video are displayed along with 
various status in both graphical and textual form. (b) Example of a configuration for an unmanned ground vehicle. No 
map is displayed but video is prominent. 



A particular configuration file specifies the display layout in monitor mode. But in control mode, the current 
configuration is determined by the currently selected vehicle’s identity. MOCU attempts to find the configuration file 
that is most specific to that vehicle, starting with the vehicle name and progressing through model, class, manufacturer, 
protocol and finally, modality (UAV, USV, etc.). This allows one configuration to be used for all vehicles or a different 
user interface for each vehicle or the same interface for vehicles of the same modality, or any variation of these. For 
example, one configuration file can be used for all iRobot vehicles by specifying “iRobot” in a configuration file. 
Alternately, two separate configuration files can be created, one for the PackBot Scout and one for the Gator. MOCU 
will select the most specific configuration file for a particular vehicle. If one file is general (iRobot) and another is 
specific (iRobot Gator), MOCU will select the more specific configuration file over the more general file. 
  
The importance of having a flexible interface is derived from controlling and monitoring all types of vehicles and 
sensors. For sea vehicles, the operator will require digital nautical charts detailing features in the waterways (Figure 8a) 
whereas for ground vehicles, detailed terrain information is required. In some applications, map data is not needed and 
only video and status information are required (Figure 8b). In this instance, the display configuration would not include 
maps. The ability to easily modify the user interface is an important attribute of a truly common OCU.  
     
The layout of the display and mapping of the user input is generally customer specific. Each user has their own 
requirements as to which data is to be displayed and how it is arranged. By using runtime-loaded configuration files, 
each customer can see a different display but use the same software. For example, some customers require the display 
be configurable by the user and have a Microsoft Windows application feel with docking, resizable windows. Others 
require the application run full screen, with no dynamic window configuration. Another example is the mapping of 
joystick buttons. Each vehicle typically provides different functionality, and the mapping of a joystick often reflects 
these special capabilities. With the configuration files, button 1 can be mapped to the “IR filter toggle” function for one 
vehicle and “laser pointer toggle” for another. Buttons in the display are accessed by the mouse or touch screen and are 
similarly configurable. 
 
Some vehicles provide more functionality than can be mapped using a feasible number of buttons (or axes on a 
joystick). Configuration modes assign a joystick to different functionalities (Figure 9). For instance, the vehicle may 
contain a camera with many features. If the user needs 
to control this functionality but only when the vehicle 
is stationary, the configuration file may describe two 
modes, one for teleoperation and another for control of 
the camera. The teleoperation mode might assign four 
buttons to drive the vehicle, while the camera mode 
might assign the same four buttons to “focus” and 
“zoom”. 
 
The configuration files specify how the information 
from the selected vehicle is presented on the display. 
Graphical gauges are used to give quick feedback, 
while textual gauges provide absolute values where 
appropriate. The style of a gauge, including dashboard, 
bar graph, textual or indicator, may be chosen to 
present the information in the format that is best suited 
to the nature of the data. 
 
2.4 Interoperability 
The military is moving towards network-centric warfare where systems will be required to communicate with one 
another to share information. MOCU has the capability to communicate with existing command and control (C2) 
systems, and thus provide data from robotic assets to enrich the battle-space awareness. Communication with a C2 
system may be unidirectional (in either direction) or bidirectional. The operator may receive a broader perspective with 
knowledge of surrounding systems, while systems up the chain benefit from information collected by the vehicles being 
monitored by MOCU. 
 

Figure 9: Two help images describing the same joystick in 
different configuration modes. 



In addition to monitoring the route that a particular vehicle is executing, the overarching C2 system can also send routes 
to the vehicle via MOCU. Depending on how MOCU is set up, these routes can either be immediately passed on 
unchanged, or they can be displayed to the MOCU operator as a C2-Link suggested route. In the latter case, the MOCU 
operator can accept the route as is, modify the route before sending it down to the vehicle, or reject the route outright. 
Whichever option the operator chooses, the action is reported to the C2 Link so that the higher level C2 system is aware 
of what the vehicle is actually doing. 
 
Track data is one of the most common types of information to be exchanged between a higher level C2 system and 
MOCU. For example, if a vehicle or sensor is tracking radar contacts, that information can be sent up to the C2 system 
to increase situational awareness for the area around each of the unmanned systems. Similarly, the C2 system can relay 
contact or track information down to MOCU. Since the devices that generate the contacts for a higher level C2 system 
are much more capable and accurate than those residing on typical unmanned vehicles this is a tremendous opportunity 
to increase the situational awareness of both the MOCU operator as well as any vehicles that are communicating with 
MOCU. This contact information can be used by the unmanned vehicle for path-planning and obstacle-avoidance 
purposes. 

 
3. IMPLEMENTATIONS 

 
MOCU was originally created in 2001 in response to a need for the Unmanned Ground Vehicle (UGVx) program for a 
small OCU capable of creating pixel-accurate routes for a small ground robot using aerial photography. This early 
version had a moving map that used aerial photos to display the location of the vehicle as well as allow the user to 
define routes. The status display was limited to textual output. 
 
In 2002, immediately after the conclusion of the UGVx program, SSC San Diego was 
contacted to create a similar OCU for the Night Vision and Electronic Sensors 
Directorate (NVESD) Remote Robotic Reconnaissance Vehicle (R3V) project under 
the Night Vision Cave and Urban Assault (NVCUA) ACTD. The requirements here 
were that the OCU had to run on an embedded processor with no moving parts (i.e., 
no hard disk), fit in a small backpack, and be able to simultaneously control an SSC 
San Diego URBOT and both an iRobot PackBot Scout and Explorer (Error! 
Reference source not found.). Graphical gauges were added to improve the user 
interface, and dependence on a mouse was removed to support increased mobility. 
The hardware joystick/button controllers could be swapped in or out so that the OCU 
hardware could be re-configured quickly to control vehicles with different capabilities 
(flippers, actuators, grippers, etc.). It was during this period that the first loadable 
modules were created: Gauges, Environmental Sensors, and Protocols. The protocol 
modules were significant because although the URBOT uses the SMART protocol 
and the PackBots use a proprietary iRobot protocol, MOCU was able to control both 
of these vehicles simultaneously. In addition, the flexible user interface was created at 
this time because the PackBots and URBOT have significantly different capabilities. 
 
The SPARTAN ACTD work began toward the end of R3V in late 2003. The goal of the SPARTAN program is to field 
an Unmanned Surface Vehicle (USV). Rather than create another custom OCU, the SPARTAN team formed a working 
group to evaluate currently available OCUs and choose the one that best met their needs. After evaluating several 
different alternatives, the working group decided MOCU was the most viable candidate. For the SPARTAN project, the 
primary user interface was through a Digital Nautical Chart (DNC), a product of the National Geospatial Intelligence 
Agency (NGA, formerly known as NIMA). SSC Charleston already had an existing DNC display application known as 
COGENT (COmmon GEospatial Navigation Toolkit) that could be integrated into MOCU and would become the first 
map module. An emerging robotics protocol standard known as JAUS (Joint Architecture for Unmanned Systems) was 
adopted and integrated into MOCU through the JAUS protocol module. The JAUS protocol was extended to handle 
messages required for controlling a USV. In addition, a radar interface was added that allowed MOCU to display radar 
contacts as well as overlay raw radar imagery directly on the chart. Later, a command and control module (C2 Link) 
was created that allowed MOCU to communicate with a higher level C2 program known as the Joint Unmanned 

Figure 10: Prototype of 
handheld OCU designed for 
NVESD. 



Systems Common Control (JUSC2), which provides status of unmanned systems to higher level C2 systems as well as 
allowing the higher level C2 system to give instructions to the unmanned vehicles. 
 
The Family of Integrated Rapid Response Equipment (FIRRE) program was the next to adopt MOCU in 2005. The 
purpose of the FIRRE program is to integrate UGVs, unattended ground sensors (UGSs) and ground surveillance radars 
(GSRs) into a system that provides force protection of high-value areas for forward-deployed forces. MOCU (known as 
Joint Battle Command and Control Station (JBC2S) under FIRRE) is being modified to monitor the status of ground 
sensors, monitor and control the GSRs and control the Tactical Amphibious Ground Support System (TAGS) vehicles. 
 
The JUSC2 and Navy’s Littoral Combat Ship (LCS) programs will be using MOCU to control USVs. The LCS program 
is using MOCU for both the Mine Warfare (MIW) mission as well as the Antisubmarine Warfare (ASW) mission. 
 
MOCU is also being used to support a number of Joint Robotics Program (JRP) projects at SSC San Diego. These 
include controlling UGVs, a USV, a UAV and a UUV as well as a weapon system. In December 2005, SSC San Diego 
demonstrated some of MOCU’s capabilities to representatives from government and industry by showing simultaneous 
control of robots operating on land, sea and air. All of these assets were controlled from a single computer, running a 
single instance of MOCU, by a single operator. 
 
 

4. FUTURE OF MOCU 
 
MOCU has continued to be adopted by ever more unmanned systems programs, which will inevitably lead to continued 
innovation and additional functionality. There are plans to interface to additional UAVs and to add features to enhance 
the control and mission planning for UAVs, such as route verification using DTED and other terrain databases, as well 
as a STANAG 4586 protocol module. There will certainly be additional types of modules developed and additional 
variants of the existing types, possibly including new types of map modules with 3D display capabilities, automatic 
mission planning modules and path planning modules, generic payload modules, etc. 
 
The C2Link modules will also be extended to interface with additional command and control architectures and will 
include the integration of more service-oriented-architecture (SOA) approaches such as XML, DDS and JMS. Two of 
these efforts are underway now. One is to interface MOCU to the SSC San Diego CFn which is an instantiation of the 
Navy’s future FORCEnet Services Infrastructure (FSI). The other is LCS in which MOCU will interface to the 
Integrated System Services (ISS), a data and services distribution system. 
 
SSC San Diego is also planning on developing a distributed control architecture, where multiple MOCUs 
communicating through a common network would have the ability to pass vehicle, sensor and database information 
between them as well as control of individual vehicles. There is a growing objective within the unmanned system 
community for a common OCU that will control many if not all of the vehicles in a particular mission. MOCU is 
currently capable of controlling multiple vehicles, but there is a definite limit on the number of systems one operator 
can control or even supervise. This limit is primarily based on the level of autonomy of the vehicles and the payloads 
and the mission complexity. In a situation where there are more vehicles in operation than one operator can control, it 
would be useful to start up a second identical MOCU, have it download all of the vehicle and mission data, and then 
have that additional operator take control of some of the assets. 
 

5. CONCLUSION 
 
Even as unmanned systems gain continuing acceptance on the battlefield, most require a stovepipe OCU to control 
them. MOCU provides the capability to control and monitor multiple heterogeneous systems while remaining flexible to 
handle different missions. MOCU was created to be modular and scalable to prevent it from becoming a large software 
program that requires an inordinate amount of effort to make a relatively small change. As technology advances, 
MOCU will be able to advance by adding or replacing functionality. The incorporation of new functionality need not be 
limited to SSC San Diego, but can be added seamlessly through third-party development. 


